Disclaimer: This content reflects my personal opinions, not those of any organizations I am or have been affiliated with. Code samples are provided for illustration purposes only, use with caution and test thoroughly before deployment.
A scammer(s), with the name “Amrw Hoinc”, is trying to use my identity to sign up for multiple websites. Based on the IP and phone number, they is based in Algeria and speaks Arabic and French. They signed up for multiple website builder tool, AI customer service chatbot, form builder, content publisher, and all kinds of AI tool and games. I suspect they are trying to create fake websites with AI-generated content with chatbot and sign-up forms. I have reported this to Algerian police and international cybercrime prevention authorities. Amrw Hoinc, please stop.
If you came across anything that uses my name or email, please contact me immediately.
يحاول محتال باسم "عمرو هوينك" استخدام هويتي للتسجيل في مواقع ويب متعددة. استنادًا إلى عنوان IP ورقم الهاتف، فهم يقيمون في الجزائر ويتحدثون العربية والفرنسية. لقد اشتركوا في العديد من أدوات إنشاء مواقع الويب، وبرنامج دردشة لخدمة العملاء بالذكاء الاصطناعي، وبرنامج إنشاء النماذج، وناشر المحتوى، وجميع أنواع أدوات وألعاب الذكاء الاصطناعي. أشك في أنهم يحاولون إنشاء مواقع ويب مزيفة بمحتوى تم إنشاؤه بواسطة الذكاء الاصطناعي باستخدام برنامج دردشة ونماذج تسجيل. لقد أبلغت الشرطة الجزائرية والسلطات الدولية للوقاية من الجرائم الإلكترونية. عمرو هوينك، من فضلك توقف.
Un escroc du nom de « Amrw Hoinc » tente d’utiliser mon identité pour m’inscrire sur plusieurs sites Web. D’après l’adresse IP et le numéro de téléphone, il est basé en Algérie et parle arabe et français. Il s’est inscrit à plusieurs outils de création de sites Web, à un chatbot de service client IA, à un générateur de formulaires, à un éditeur de contenu et à toutes sortes d’outils et de jeux IA. Je soupçonne qu’ils essaient de créer de faux sites Web avec du contenu généré par l’IA avec un chatbot et des formulaires d’inscription. J’ai signalé cela à la police algérienne et aux autorités internationales de prévention de la cybercriminalité. Amrw Hoinc, arrêtez s’il vous plaît.
I recently worked on a project to migrate a CDK project to Terraform, because the client want to standarize on Terrafrom. This could have been a time-consuming job, and it requires expertise on both CDK and Terraform, but with the help from generative AI, especailly Amazon Q Developer and Amazon Bedrock, it becomes quite easy. This article will walk you through how I performed the migration and the lessons learned through the process.
My Linux laptop is running the old Ubuntu 20.04 and is going to go out of support next year. I was planning to switch over to NixOS but I don’t have time right now to do a fresh reinstall and learn NixOS from scratch. That’s why I decided to simply upgrade to Ubuntu 24.04 and switch to Wayland.
I was using i3 on X11, so switching to Wayland means I have to change many of my settings and switch to utilities that supports Wayland. This post is a rundonw of all the changes I’ve made to switch to Wayland. Overall, I enjoy the smoothness of Wayalnd (abiet barely noticable), and being able to use newer, more polished utiltity tools.
(To view a larger version of a screenshot, right-click on the image and select Open Image in New Tab.)
By default, when you use JupyterLab in Amazon SageMaker Studio, you’ll see some Python code being highlighted with pycodestyle syntax check error. This can get distracting if you don’t care about them or have the checks in the CI/CD pipeline already.
Recently, I’ve been working on a project that requires running thousands of models simultaneously. To save costs, we decided to run it on a SageMaker Multi-Model endpoint.
Here is the official definition of Multi-Modal Endpoint from the official AWS Documentation:
Multi-model endpoints provide a scalable and cost-effective solution to deploying large numbers of models. They use the same fleet of resources and a shared serving container to host all of your models. This reduces hosting costs by improving endpoint utilization compared with using single-model endpoints. It also reduces deployment overhead because Amazon SageMaker manages loading models in memory and scaling them based on the traffic patterns to your endpoint.
Some example use cases include:
House price estimation models for different cities
Machine anomaly detection algorithms for different machine configurations
These use cases have many models, with the same model algorithm and framework but trained on different dataset.
A key questions aries: “How many models can we fit into one instance, and what instance type do we need?”. This post demonstrates my experiment results to answer this quesetion.